0=2(x^2-+x-520)

Simple and best practice solution for 0=2(x^2-+x-520) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2(x^2-+x-520) equation:



0=2(x^2-+x-520)
We move all terms to the left:
0-(2(x^2-+x-520))=0
We add all the numbers together, and all the variables
-(2(x^2-+x-520))=0
We use the square of the difference formula
-(2(x^2-x-520))=0
We calculate terms in parentheses: -(2(x^2-x-520)), so:
2(x^2-x-520)
We multiply parentheses
2x^2-2x-1040
Back to the equation:
-(2x^2-2x-1040)
We get rid of parentheses
-2x^2+2x+1040=0
a = -2; b = 2; c = +1040;
Δ = b2-4ac
Δ = 22-4·(-2)·1040
Δ = 8324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8324}=\sqrt{4*2081}=\sqrt{4}*\sqrt{2081}=2\sqrt{2081}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{2081}}{2*-2}=\frac{-2-2\sqrt{2081}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{2081}}{2*-2}=\frac{-2+2\sqrt{2081}}{-4} $

See similar equations:

| 9-b/3=-6 | | x^2+3x/2-1=0 | | –s+75=1 | | 2.3x=5.75 | | 5b+25=150 | | 9•n=144 | | 10(3x-8)=6(2x) | | 41​ (x−5)=−5 | | b/4=-1 | | 3-m*m+5m-7=m^2-3m-7 | | 3(j-67)=87 | | 5x–2=-3x+13 | | x–1≤9;x=10 | | 2x-45=-11 | | 2x3x=11 | | 3(y+49)=270 | | 7x+9=-2x-1 | | 3(2z+5)=7z | | -5-3(6x+10)=9-7x | | 8=h-45/5 | | 25c-100=0 | | 40x+100x=200 | | 5(x+18)=940 | | 31a=24 | | |−7x+9|=2x-1 | | 56=8(t-81) | | x÷9=-9 | | –17b+18b+–5=13 | | 2b÷3=12 | | p+3.5=5.5 | | -6=b/3-9 | | 2(x–3)+4x=-12 |

Equations solver categories